Cannabis Use Disorder

Ruchi Fitzgerald, MD FAAFP

Associate Program Director, Rush Addiction Medicine Fellowship Assistant Professor, Family Medicine/Psychiatry & Behavioral Sciences, Rush University

The ASAM Review Course of Addiction Medicine

July 2022

Financial Disclosures

Ruchi Fitzgerald, MD FAAFP No Disclosures

Learning Objectives

- Name the different formulations of cannabis that impact individuals today.
- Review medications that have an evidence base for treating cannabis withdrawal and cannabis use disorder.
- Increase knowledge about current epidemiological trends in cannabis use in the United States.

Epidemiology

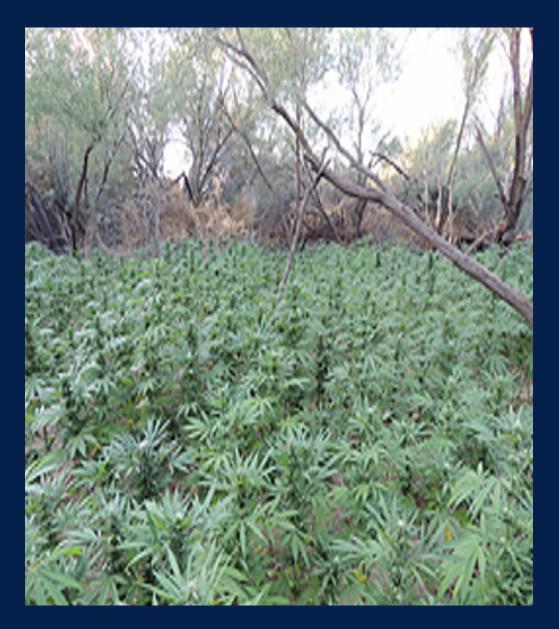
Cannabis Use/Misuse

- ◆ In 2015, estimated 22.2 million Americans 8.9% of the population aged 12 years or older had used cannabis in the preceding month.
- ◆ In 2016, 22.5% of 12th grade students smoked cannabis in the preceding month.
- Cannabis use peaks in the late teens to early 20s, then declines.

Increased Risk for Use Disorder

- 9% of people who use marijuana may develop 'pre-substance dependence.'
- The risk increases to 17% in people who start using in adolescence.
- ◆ The risk increases to 25 to 50% in people who are daily users (most of whom started using marijuana early in adolescence).

Cannabis Basics


- The cannabis plant has 104 cannabinoids; only 2 (THC and CBD) have been extensively studied for potential therapeutic applications.
- ◆ THC is the most psychoactive component (inhaled, ingested)
- CBD is postulated to have other mechanisms of action (antiinflammatory, analgesic, etc.).
- Synthetic cannabinoids vs. Endocannabinoids they are structurally similar.

Cannabis Plant

Natural, Plant - Derived Cannabinoids

Most common preparations:

*Marijuana

*Hashish

*Hash Oil

THC Concentrations vary—

For example, extraction of THC with butane ("dabs") can contain up to 90% THC.

Synthetic Cannabinoids

- Higher affinity for cannabinoid receptors than THC
- Have active metabolites that prolong their durations of action
- Increased potential for toxicity
- "Spice" or "K2"
- Not detected on standard UDS



Synthetic Cannabinoids

Synthetic Cannabinoids

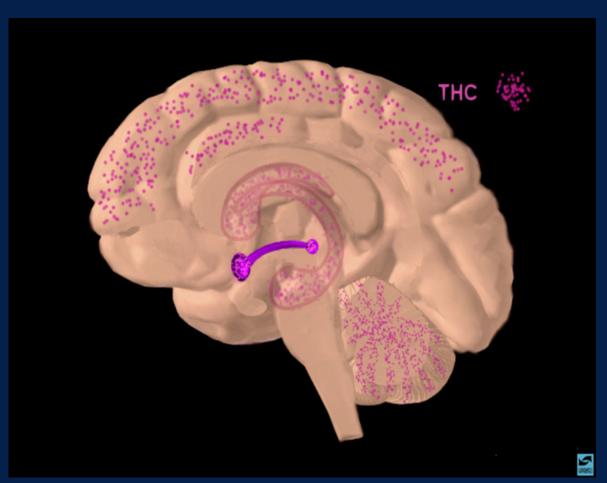
Cannabinoid Receptor Neurobiology

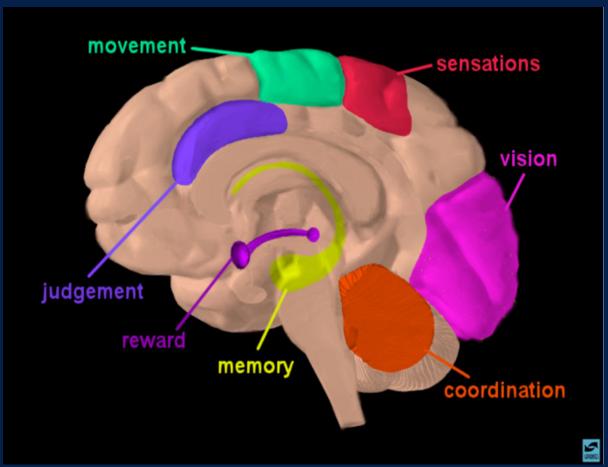
The Cannabinoid System

- THC activates the CB1 and CB2 cannabinoid receptors:
 - ◆ CB1 has high density in cerebellum, basal ganglia, hippocampus, cerebral cortex. *G protein mediated system*.
 - CB1 has low density in the brainstem, hence low risk of respiratory depression.
 - ◆ CB2 is found in spleen, hematopoietic cell lines, mast cells.

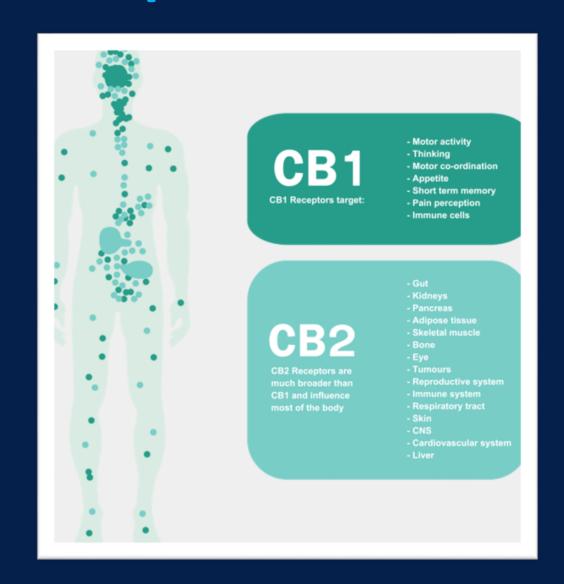
9-tetrahydrocannabinol (THC)

- Primary psychoactive constituent
- Endocannabinoid system
 - Brain development
- Mimics anandamide
 - Dial down neuron activity


Cannabinoids (CBs)


- → > 400 chemicals, ↓ neurotransmitterrelease
- ◆ Natural CBs
 - Endogenous Anandamide ("bliss")
 - Exogenous Sativa plant (marijuana)
 - Tetrahydrocannabinol (THC) psychoactive
 - ◆ Cannabidiol (CBD) no effect in brain

CB1 Receptor Locations in the Brain


The Endocannabinoid System

- Endocannabinoids (AEA, 2-AG) are naturally produced by the body.
- They bind to cannabinoid receptors.
- Endocannabinoids bind both CB 1 and CB 2.
- Endocannabinoids function as "retrograde messengers."

Cannabinoid Receptors

- ◆ CB1 CNS site of CB binding
 - Memory, learning, problem solving, coordination
 - Activated by anandamide, other
 CBs
 - Modulates neurotransmitters
- ◆ CB2 immune cells outside CNS
 - Anti-inflammatory effects

Cannabis Intoxication

- Desired effects: relaxation, euphoria, slowed time perception, altered sensory perception, increased appetite.
- Undesired effects: impaired concentration, anterograde amnesia, anxiety, panic attacks, paranoia, derealization/depersonalization, psychosis (visual – not auditory hallucinations).

	Seizures		Tachycardia
	Agitation	Cardiovascular	Hypertension
Central	Irritation		Chest pain
Nervous	Loss of consciousness		Cardiac Ischemia
System	Anxiety		
	Confusion	Gastrointestinal	Nausea
	Paranoia		Vomiting
Metabolic	Hypokalemia	Autonomic	Fever
	Hyperglycemia		Mydriasis
		Other	Conjunctivitis

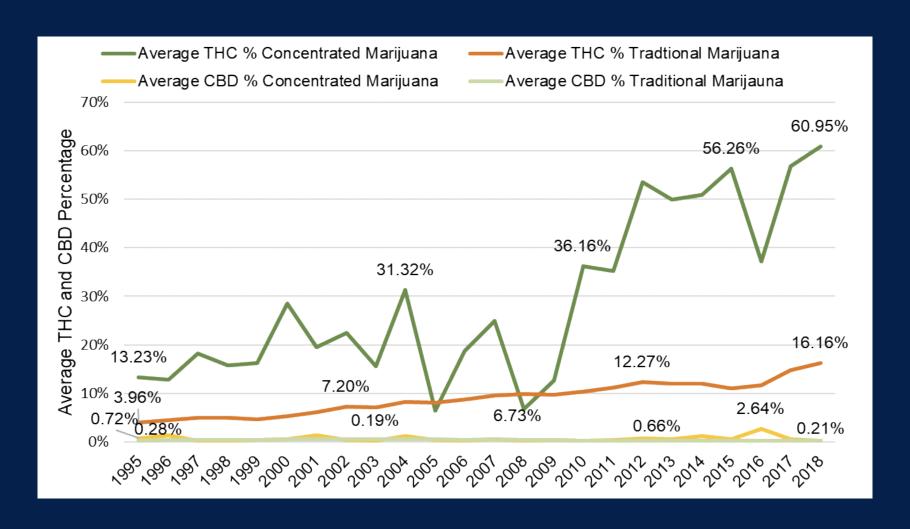
Cannabis Withdrawal

- Reported by up to 1/3 of persons who use cannabis frequently.
- Cannabis withdrawal is recognized by the DSM 5.
- Clinical trials show reduction of withdrawal symptoms with synthetic THC (dronabinol), nabilone, nabiximol, and gabapentin.

Cannabis Withdrawal

Causing distress & ≥ 3 of the following:

- Irritability
- Anxiety
- Sleep problems


- ◆ ↓ Appetite/weight loss
- Depressed Mood
- Restlessness

AND ≥ 1 of the following:

- Abdominal pain
- Sweating
- Shakiness/tremors

- Fever/chills
- Headache

THC Percent is Increasing

THC Potency is Increasing

- Up to 31 % in products
- Widespread availability of THC edibles (food and beverage products) and butane-extracted hash oil products ("dabs", "budder", "shatter", "wax")
- ◆ Rate of ED visits per 100,000 for cannabis-related adverse reactions has dramatically risen: 96.2 to 146.2 (2004 in 2011).

Routes of Administration

- ◆ Smoked:
 - Reaches the brain in minutes
 - Effects last 1 3 hours
 - Delivers significant amount of THC into the bloodstream

Smoked	Vaporized	Eaten/Drunk
Smoked in a pipe, bowl, cigarette	Inhaled through machine that converts active compounds into inhalable form	Consumed as ingredient in baked goods, candies, sodas
Rapid effects	Rapid effects	Takes time to reach brain, so effects are delayed

Routes of Administration

- Eating or drinking marijuana:
 - ◆ Takes ½ 1 hour to have an effect
 - Effects last up to 4 hours
 - Delivers less THC into the bloodstream

Smoked	Vaporized	Eaten/Drunk
Smoked in a pipe, bowl, cigarette	Inhaled through machine that converts active compounds into inhalable form	Consumed as ingredient in baked goods, candies, sodas
Rapid effects	Rapid effects	Takes time to reach brain, so effects are delayed

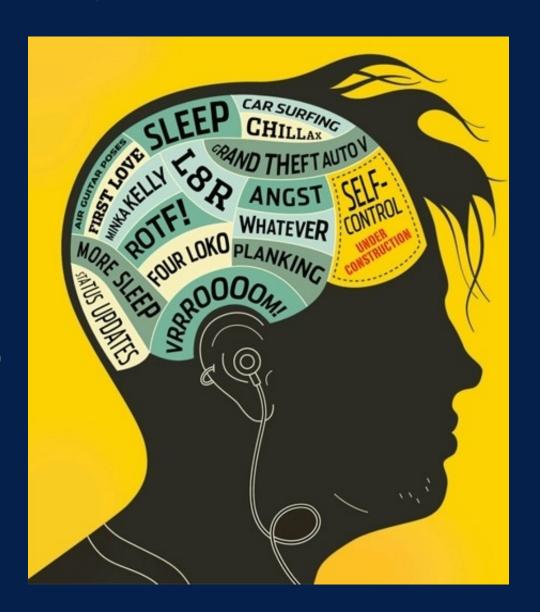
Decreased Harm Perception: Adolescents

- ◆ 36% of teens think cannabis is harmless
 - ◆ 43% favor legalization
 - ◆ 80s: 15%
 - 90s-00s: 30%
- Harm perception lowest in 40 yrs
 - ◆ Often precedes ↑ prevalence

Special Populations and Cannabis

- Adolescents
- Pregnant persons

Rates Across Adolescence


- Ever tried
 - ◆ ~17% 8th graders
 - ◆ ~50%12th graders
- Past year use
 - ◆ 12% 8th graders
 - ◆ 35% 12th graders

- Current use (past month)
 - ◆ 7% 8th graders
 - ◆ 21% 12th graders
 - Surpasses current alcohol and tobacco use

Adolescent Brain

- May be vulnerable to the addictive nature of cannabis and neurotoxic effects, including development of psychiatric disorders.
- One study showed decline in IQ among cannabis users before the age of 18, with much less recovery of neuro-psych functioning.
- NSDUH data: risk for cannabis dependence is higher if use begins before age 16 (17% versus 4%)
- Most and latest change in areas of:
 - Reward and motivation
 - Cognition

Pregnancy

- THC crosses the placenta (also note effect of smoking)
- Endocannabinoid system plays a role in the control of brain maturation, particularly emotional responses
- Babies exposed to THC:
 - Neurological development effects
 - ◆ Reduction in fetal growth, also other negative effects on the infant

Pregnancy

- Children exposed to THC:
 - Problem-solving skills, memory, attention deficit
- ◆THC-specific vs. associated environmental factors hard to sort out; ongoing debate and research.

Toxicology Testing

- Casual use:
 - Up to 10 days in urine
 - 50% positive in hair samples
- Heavy use:
 - Up to 30 days in urine
 - ◆ 85% positive in hair samples

- Measures THC
- Weight loss gives serial UTox spike
- Dronabinol gives positive test
- Passive inhalation gives negative test

Effects of Use

Neurocognitive Effects

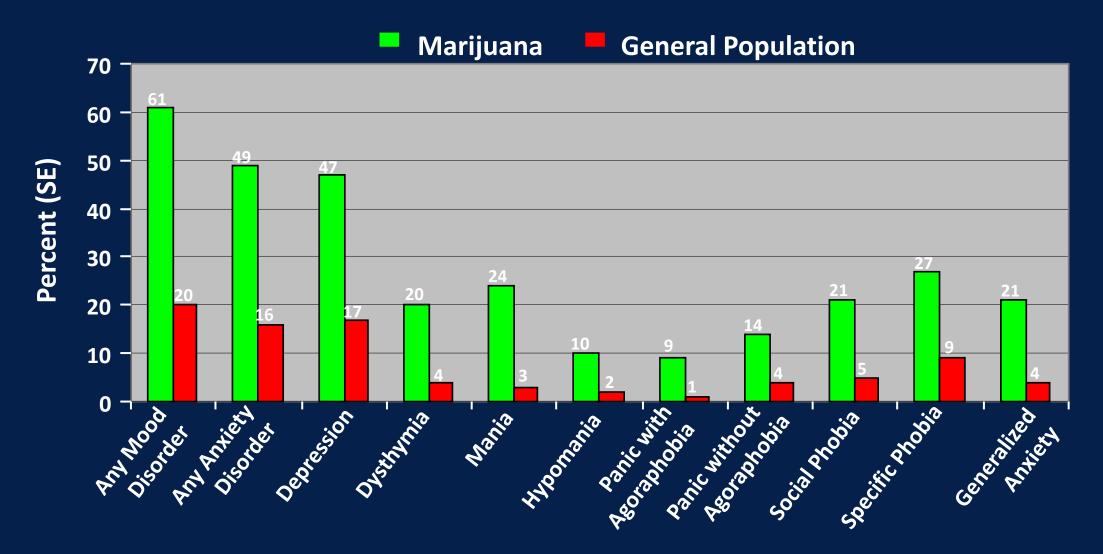
- Short-term memory impairment
- Judgment impairment
- Motor coordination impairment

Impaired Cognition

- ◆ ↓ Ability to learn
- lacktriangle \downarrow Attention, concentration
- ◆ ↓ Abstract reasoning and decision-making
- ◆ ↓ Memory

Physical Health

- Respiratory
 - ◆ ↓ Function
 - ◆ ↑ Infections
- ◆ ↑ Stroke/Temporary brain blood constriction



Psychiatric

- Anxiety
 - lacktriangle Acute THC $\rightarrow \downarrow$ anxiety
 - ◆ Long-term THC → ↑ anxiety
- ◆ ↑ Depression
- ◆ ↑ Psychosis

Psychiatric Co-Morbidity

Diagnosis

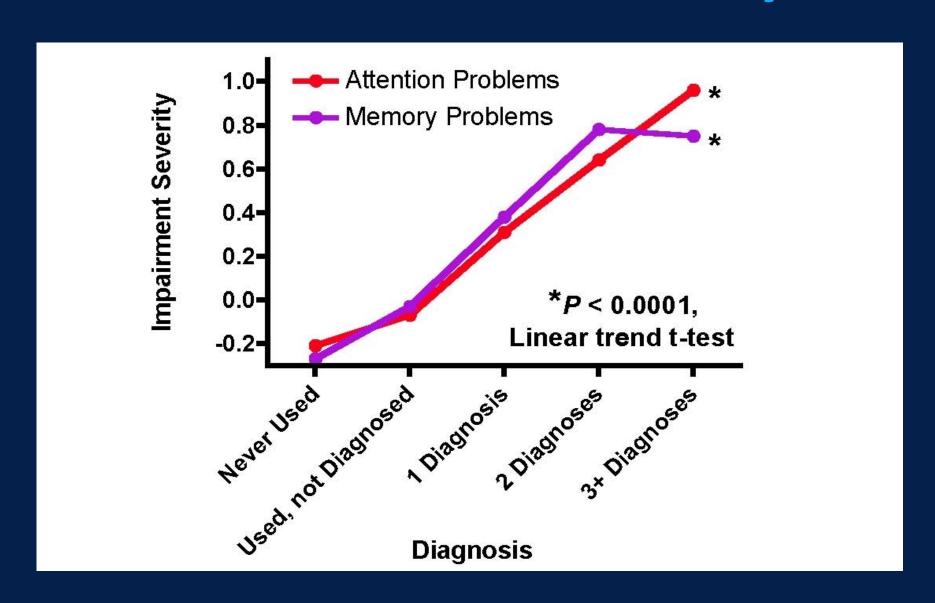
Substance Use Disorder

In Same Year, ≥2 of:

- **♦** Tolerance
- Withdrawal
- Use more/longer
- ◆ Unable to ↓ use
- Use despite problems
- Craving

- Failed roles
- Hazardous use
- Social problems
- ◆ ↓ Activities
- Lots time use

Cognitive Effects



Residual Cognitive Effects

- Memory
 - Learning & retaining new information
- Attention and concentration
 - Response speed & variability
- Executive functioning
 - Working memory
 - Verbal fluency

Attention and Memory

Likely Reversible with Abstinence

- ◆ Biological markers normalize ~4wks
 - CB receptor density in brain
 - Cortical blood volumes
- Especially in cognitive areas

Treatment

Treatment for CUD is Challenging

- Few evidence-based supported approaches
- ◆ ~ 50% achieve remission
- ◆ ~ 70% return to use
- ◆ No FDA-approved medications

Psychosocial Treatments

- Motivational Enhancement Therapy
- Cognitive Behavior Therapy
- Contingency Management
- Family-Based Programs

Medication for CUD

- N-acetylcysteine (NAC)
 - Amino acid derivative, OTC supplement
 - Restores normal glutamate activity
 - ◆ Pros: ↓ use in Non-Treatment Seeking adolescents, *not in adults*
 - ◆ Cons: did not ↓ craving

Pharmacologic Treatment Options

Medication	Mechanism	Comments	Literature in Adolescents?
Atomoxetine	Norepinephrine reuptake inhibitor	No change in cannabis useWorsened irritability and GI side effects	• Thurstone et al., 2010 ⁷
Bupropion	Norepinephrine reuptake inhibitor	Exacerbated withdrawal (irritability, insomnia)	• Riggs, et al., 2013 ⁸
Buspirone	Serotonin partial agonist	 Conflicting evidence on cravings and irritability 	
Dronabinol	CB1 receptor agonist	Reduced symptoms of withdrawalContains THC	
Gabapentin	GABA modulation	Decrease self-reported cannabis useReduced withdrawal symptoms	
N-acetylcysteine	Correct glutamate dysregulation	Decreased use in adolescentsDid not show same benefit in adults	• Gray et al., 2012 ⁹
Naltrexone	Mu-opioid receptor antagonist	Enhanced subjective effects of cannabisNo change in frequency of cannabis use	

N-acetylcysteine (NAC)

Risks	 Nausea/vomiting Drowsiness/insomnia Vivid reams Anaphylactoid reactions seen with IV admin, not PO
Pharmacokinetics	 Bioavailability for oral: 9% Metabolized to cysteine and glutathione Half-life: ~ 18 hours

Gabapentin

Mechanism of Action	 Blocks alpha-2d subunit of the voltage-gated calcium channel which modulates GABA in the amygdala
Notes	 FDA approved for multiple indications, including partial seizures in ages 3-12
Doses	 Goal of ~1200mg/day Mason (2012) ¹⁰: 50 cannabis-dependent adults (18-65 years old) Gabapentin 1200mg vs placebo for 12 weeks Titrated up to 300mg / 300mg / 600mg over the course of 4 days
Clinical benefit	 Increase in negative UDS Decrease self-reported cannabis use Reduction in withdrawal symptoms (mood disturbance, craving, and sleep disturbances)

Gabapentin

Risks	Well tolerated ☺ Headache, nausea, insomnia and depression	
Pharmacokinetics	 Bioavailability: inversely proportional due to saturable absorption Immediate release 900mg/day: 60% 1200mg/day: 47% 3600mg/day: 33% 4800mg/day: 27% Extended release: increased with higher fat content Half-life: ≤ 12 years old: 5hr > 12 years: 5-7hr Longer in patients with decreased renal function 	

CB1 Receptor Agonists

<u>Cannabidiol</u> (CBD) Epidiolex ® <u>Dronabinol</u> (THC)

Marinol[®]

Syndros®

Nabilone (THC)

Cesamet[®]

Nabixmols (THC + CBD)

Stavivex® not FDA approved

Medicinal Uses of Cannabis/Cannabinoids

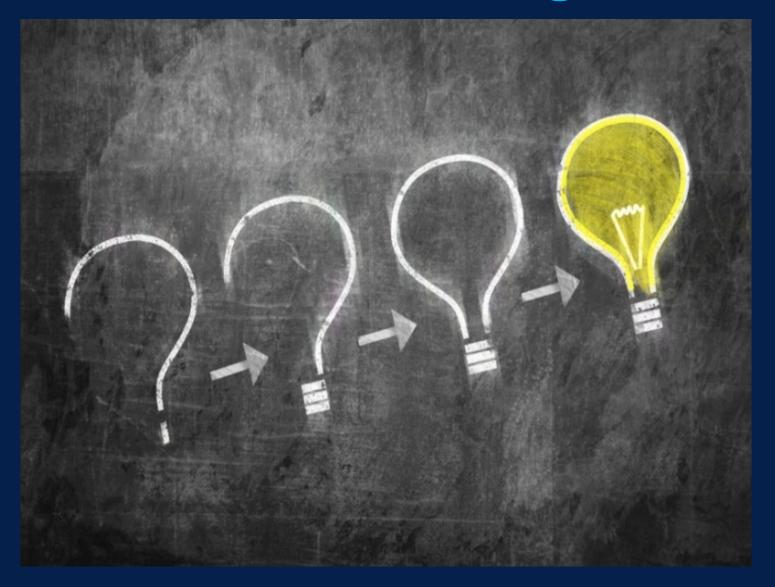
- Dronabinol: FDA approved for treatment of anorexia associated with weight loss in patients with AIDS, chemotherapy-induced nausea/vomiting.
- Nabilone: FDA approved for treatment of chemotherapy-induced nausea/vomiting.
- Studies also ongoing re: effects on other disease states (epilepsy, MS).

Therapeutic Potential

- Pain (cancer, multiple sclerosis)
- Nausea (cancer)
- Loss of appetite and wasting (HIV/AIDS)
- Increased ocular pressure (glaucoma)
- Inflammation (rheumatoid arthritis, Crohn's disease, ulcerative colitis)
- Epilepsy

In Summary

Cannabis includes plants and synthetic cannabinoids.


Cannabis use is common, risk of a use disorder increases with earlier onset of use.

Cannabis contains more THC now than in the past.

Cannabis can affect cognition, but this is reversible in adults, impacts on adolescents less clear.

Most treatment is psychosocial, but several drug targets are being investigated.

Questions? Thoughts?

Submit Your Feedback on this Session!

