STIMULANTS

Michael H. Baumann, Ph.D.

Designer Drug Research Unit (DDRU), Intramural Research Program, NIDA, NIH Baltimore, MD 21224

The ASAM Review Course of Addiction Medicine July 2022

Financial Disclosures

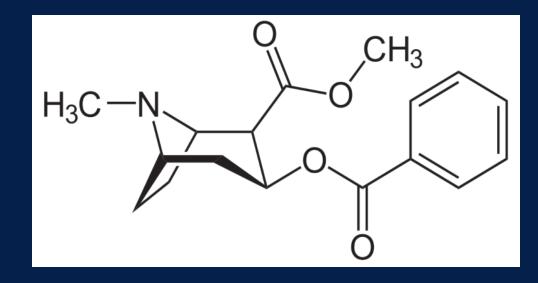
Michael H. Baumann, Ph.D. No Disclosures

General Outline

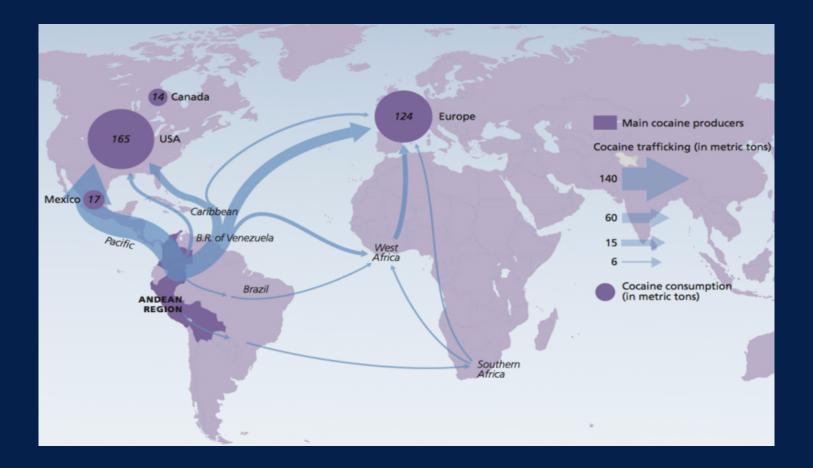
- Cocaine
- Methamphetamine
- Ecstasy
- Bath Salts and RCs
- Summary

Topics Covered for Each Substance

- Drug Trafficking and Confiscation
- Formulations and Methods of Use
- Pharmacokinetics and Metabolism
- Desired and Adverse Effects
- Chronic and Withdrawal Effects
- Neurobiology
- Treatments

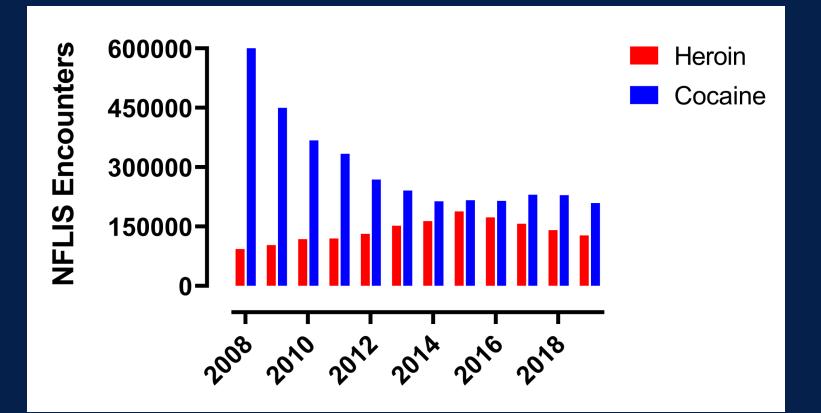


Cocaine



Cocaine is a Plant Based Alkaloid

Andean Cocaine is Trafficked on a Global Scale



UNODC World Drug Report, 2020

Cocaine Confiscation Remains Relatively Stable

Formulations and Methods of Use

- Cocaine Free Base (i.e., Crack)
 - Smoking of free base "rock" using pipes

- Cocaine HCl
 - Intravenous injection of solutions using needle and syringe
 - Intranasal snorting of powder

Pharmacokinetics and Metabolism

• Pharmacokinetics

- Smoked drug reaches brain within seconds
- Intravenous drug reaches brain within seconds
- Intranasal drug reaches brain within minutes

Metabolism

- Ester hydrolysis to benzoylecgonine
- Ecgonine methyl ester

Rate Hypothesis of Drug Reward

Smoked and Intravenous Routes

- Faster rate of drug entry into the brain
- Enhanced subjective and rewarding effects

Intranasal and Oral Routes

- Slower rate of drug entry into the brain
- Reduced subjective and rewarding effects

Desired Effects

- Enhanced Mood and Euphoria
- Increased Attention and Alertness
- Decreased Need for Sleep
- Appetite Suppression
- Sexual Arousal

Adverse Effects

- Psychosis
- Tachycardia, Arrhythmias, Heart Attack
- Hypertension, Stroke
- Hyperthermia, Rhabdomyolysis
- Multisystem Organ Failure

Tolerance- Blunted Effects

- Acute Tachyphylaxis or "First Dose" Effect
 - Cardiovascular effects blunted
 - Euphoria and sexual arousal diminished
 - But no longer-term tolerance

Anorexia

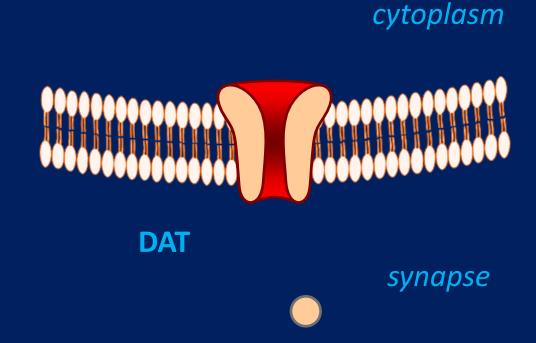
Sensitization- Enhanced Effects

- Seizures
- Psychosis
 - Paranoid delusions
 - Visual, auditory and tactile hallucinations
 - Virtually indistinguishable from schizophrenia
- Stereotypical Behaviors

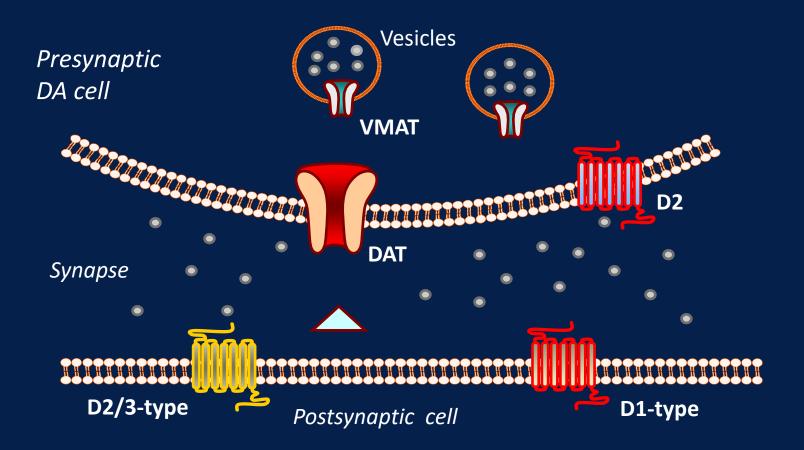
Withdrawal Effects

- Anhedonia and Depressed Mood
- Increased Appetite
- Anergia and Fatigue
- Vivid or Unpleasant Dreams
- Insomnia or Hypersomnia

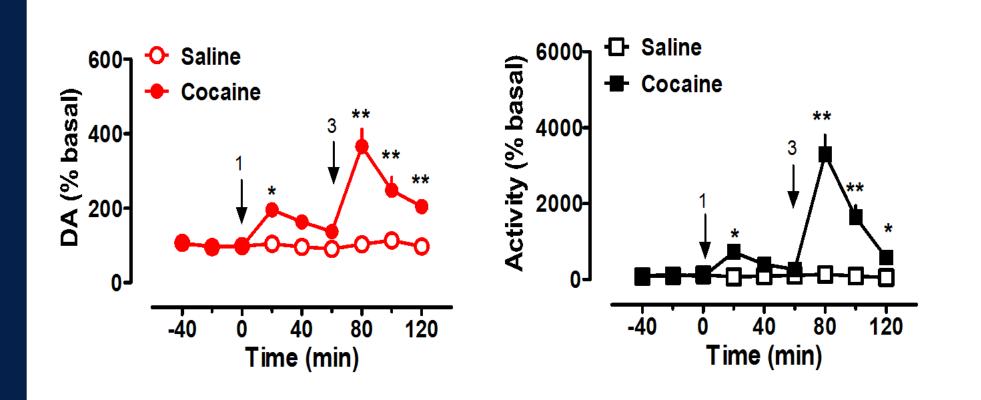
Molecular Sites of Action


- SLC6 Monoamine Transporters
 - Dopamine transporter (DAT)
 - Norepinephrine transporter (NET)
 - 5-HT transporter (SERT)

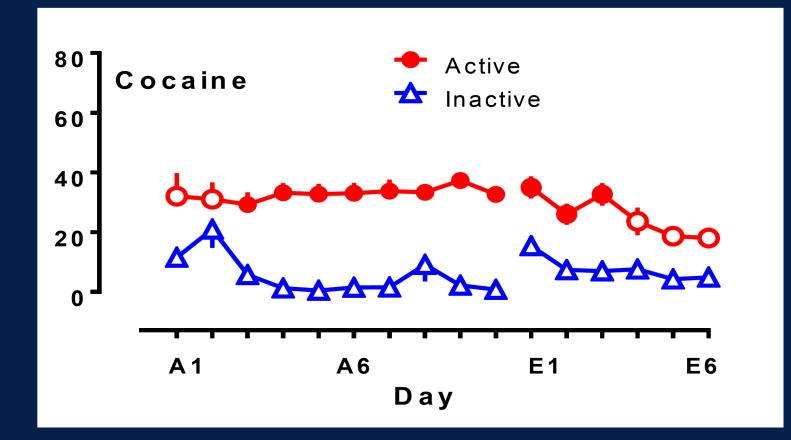
- Other sites
 - Sodium channels


DATs Mediate DA Uptake

- DATs are membrane proteins responsible for uptake of released dopamine (DA)
- Drugs that disrupt DAT function increase synaptic DA
- Increases in DA are rewarding



Cocaine is a DAT Blocker (DA Uptake Inhibitor)



Cocaine Increases Extracellular DA in Rat Nucleus Accumbens

Rats Will Readily Learn to Self-Administer Cocaine

Treatment for Cocaine Dependence

• Pharmacotherapy

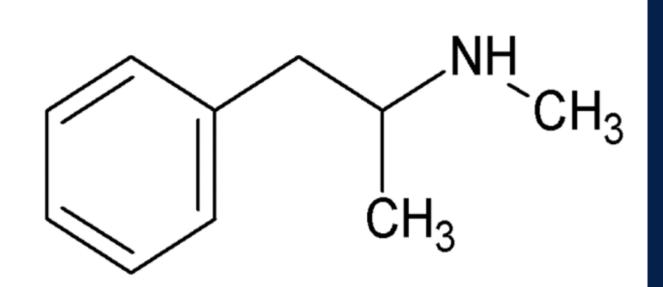
No FDA-approved medication for cocaine dependence

Psychologically-Based Therapies

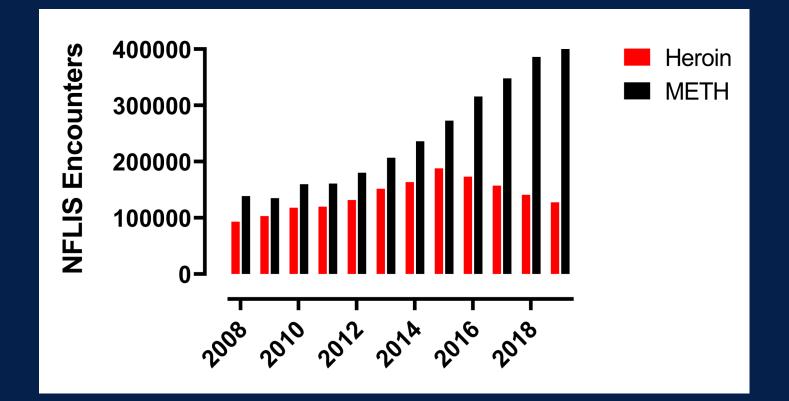
- Cognitive Behavioral Therapy
- Contingency Management
- Group & Community Therapies

Stimulant Meds- Some Success

	Psychostimulants		Placebo		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.27.1 Submaximum							
Dackis 2012	3	65	4	75	3.6%	0.87 [0.20, 3.72]	
Dürsteler-MacFarland 2013	3	30	3	32	3.4%	1.07 [0.23, 4.88]	
Kampman 2015	11	47	4	47	5.9%	2.75 [0.94, 8.02]	
Levin 2007	8	53	9	53	7.9%	0.89 [0.37, 2.13]	
Subtotal (95% CI)		195		207	20.9%	1.25 [0.71, 2.21]	◆
Total events	25		20				
Heterogeneity: Tau ² = 0.00; Chi ² = 2.97, df = 3 (P = 0.40); I ² = 0%							
Test for overall effect: Z = 0.77 (P = 0.44)							
1.27.2 Maximum or higher							
Anderson 2009	22	138	7	72	8.9%	1.64 [0.74, 3.65]	
Dackis 2005	10	30	4	32	6.1%	2.67 [0.94, 7.60]	
Dackis 2012	8	70	4	75	5.3%	2.14 [0.67, 6.80]	
Grabowski 2004	24	54	7	40	9.9%	2.54 [1.22, 5.30]	
Levin 2015	7	40	3	43	4.5%	2.51 [0.70, 9.04]	
Levin 2015	13	43	3	43	5.1%	4.33 [1.33, 14.13]	
Levin 2019	14	64	4	63	6.1%	3.45 [1.20, 9.90]	
Mariani 2012	13	39	7	42	8.8%	2.00 [0.89, 4.49]	
Nuijten 2016	11	38	2	35	3.7%	5.07 [1.21, 21.27]	
Schmitz 2012	1	20	1	8	1.2%	0.40 [0.03, 5.65]	
Schmitz 2012	2	22	1	8	1.7%	0.73 [0.08, 6.97]	
Schmitz 2014	9	22	10	18	11.3%	0.74 [0.38, 1.41]	
Shearer 2003	7	16	4	14	6.6%	1.53 [0.56, 4.15]	
Subtotal (95% CI)		596		493	79.1%	1.95 [1.38, 2.77]	\bullet
Total events	141		57				
Heterogeneity: Tau ² = 0.12; Chi ² = 17.23, df = 12 (P = 0.14); l ² = 30%							
Test for overall effect: Z = 3.77	(P = 0.0002)						
T-4-1 (05% CD		704		700	400.0%	4 77 14 94 9 491	
Total (95% CI)		791		700	100.0%	1.77 [1.31, 2.40]	-
Total events	166		77				
Heterogeneity: Tau ² = 0.10; Chi ² = 21.58, df = 16 (P = 0.16); l ² = 26% $0.01 0.1 1 10 100$							
Test for overall effect: Z = 3.74 (P = 0.0002) Favours Placebo Favours Placebo Favours Placebo Favours Placebo							
Test for subgroup differences: Chi ² = 1.72, df = 1 (P = 0.19), l ² = 41.8%							



Methamphetamine


Methamphetamine is a Synthetic Amphetamine Analog

METH Confiscation is Increasing Dramatically in Recent Years

DEA NFLIS, 2020

Most METH is Now Trafficked by Mexican Cartels

DEA NFLIS, 2020

Formulations and Methods of Use

- Methamphetamine (i.e., Ice or Crystal)
 - Smoking using pipes
- Methamphetamine HCl
 - Intravenous injection of solutions using needle and syringe
 - Intranasal snorting of crystals

Pharmacokinetics and Metabolism

Pharmacokinetics

- Smoked drug reaches brain within seconds
- Intravenous drug reaches brain within seconds
- Intranasal drug reaches brain within minutes

Metabolism

- *N*-demethylation to form amphetamine (**bioactive**)
- Hydroxylation to form inactive metabolites

Desired Effects

- Enhanced Mood and Euphoria
- Increased Attention and Alertness
- Decreased Need for Sleep
- Appetite Suppression
- Sexual Arousal

Adverse Effects

- Psychosis
- Arrhythmias, Palpitations, Heart Attack
- Hypertension, Stroke
- Hyperthermia, Rhabdomyolysis
- Multisystem Organ Failure

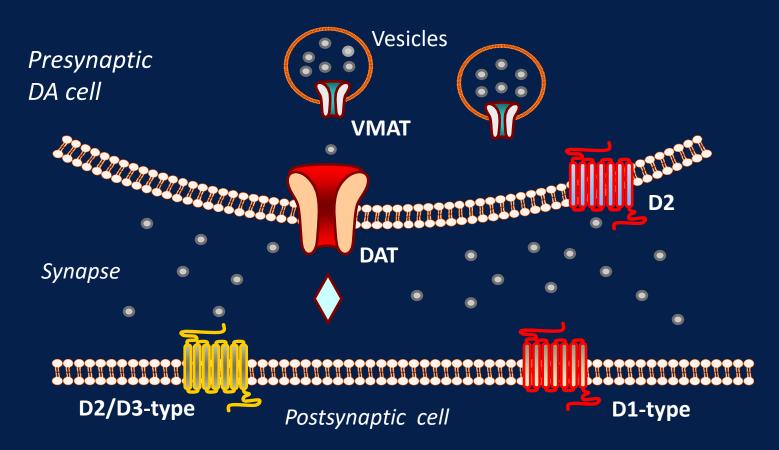
"METH Mouth"

Sensitization- Enhanced Effects

- Seizures
- Psychosis
 - Paranoid delusions
 - Visual, auditory and tactile hallucinations
 - Virtually indistinguishable from schizophrenia
- Stereotypical Behaviors

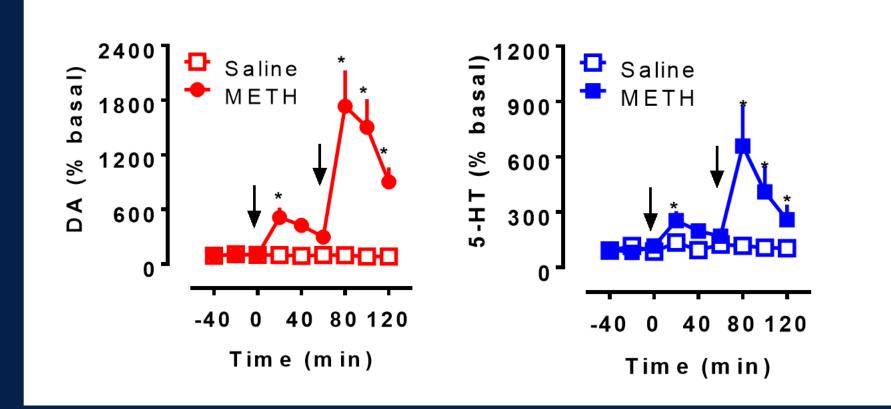
Withdrawal Effects

- Anhedonia and Depressed Mood
- Increased Appetite
- Anergia and Fatigue
- Vivid or Unpleasant Dreams
- Insomnia or Hypersomnia



Molecular Sites of Action

- SLC6 Monoamine Transporters
 - Dopamine transporter (DAT)
 - Norepinephrine transporter (NET)
 - 5-HT transporter (SERT)
- Other sites
 - Vesicular Monoamine Transporter 2 (VMAT2)
 - Trace amine-associated receptors (TAAR1)



METH is a DAT substrate (DA releaser)

METH Increases Extracellular DA More Than 5-HT

Cocaine vs Methamphetamine

COCAINE

Inhibits DAT-mediated reuptake of synaptic dopamine

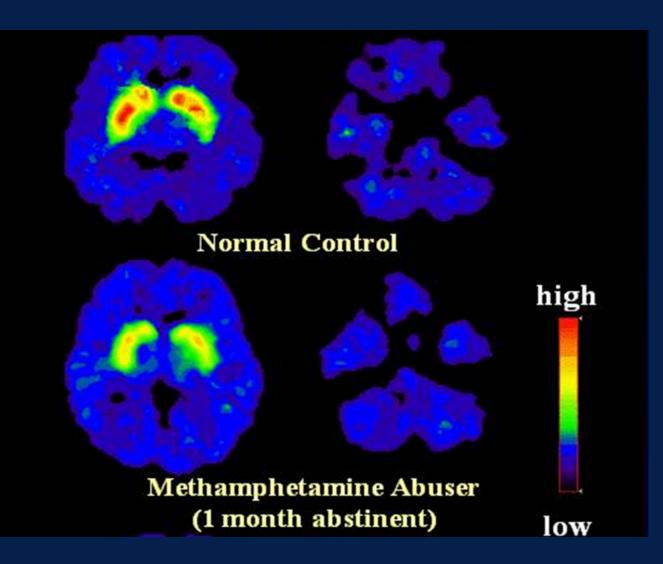
METH

Inhibits DAT-mediated reuptake of synaptic dopamine

Evokes DAT-mediated release of dopamine

Cocaine vs Methamphetamine

COCAINE


- Rapidly metabolized
- Effects last 1-2 hours
- Withdrawal lasts 1-2 days

METH

- Slowly metabolized
- Effects last 10-20 hours
- Withdrawal lasts many days

METH decreases DAT sites in brain

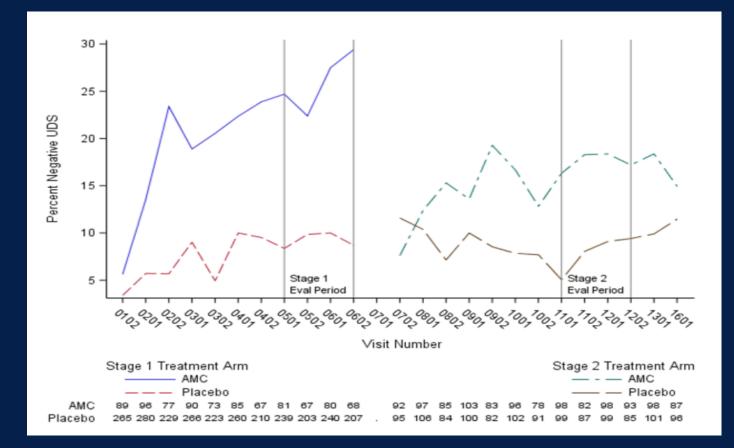
Role of METH in Gay Subculture

- 1. METH intoxication
- 2. Decreased inhibitions and judgment
- 3. Increased sensation seeking and sexual arousal
- 4. Unsafe sexual practices
- 5. HIV transmission

METH, Sex, and the Internet

- The Perfect Storm
- Sex, both virtual and real, both safe and unsafe, is only a click away
- Variable Intermittent Reinforcement

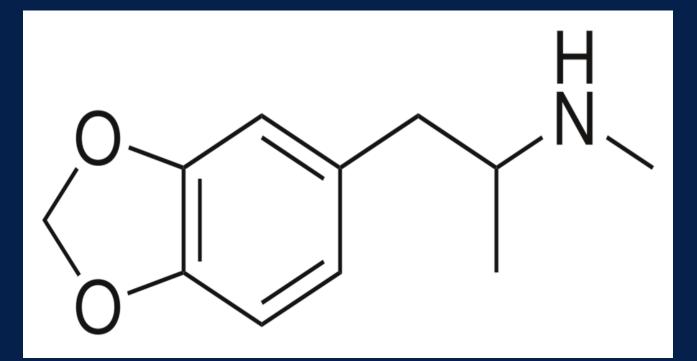
Internet Websites Foster Risky Behaviors


Treatment for METH Dependence

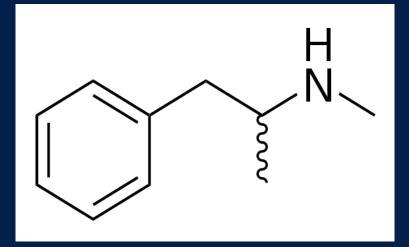
- Pharmacotherapy
 - No FDA-approved medication for METH dependence

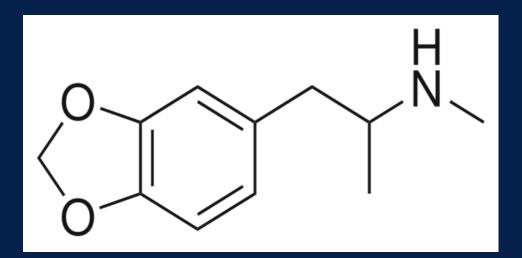
- Psychologically-Based Therapies
 - Cognitive Behavioral Therapy
 - Group and Community Therapies
 - Twelve Step Programs

Bupropion + Naltrexone Reduce METH Use



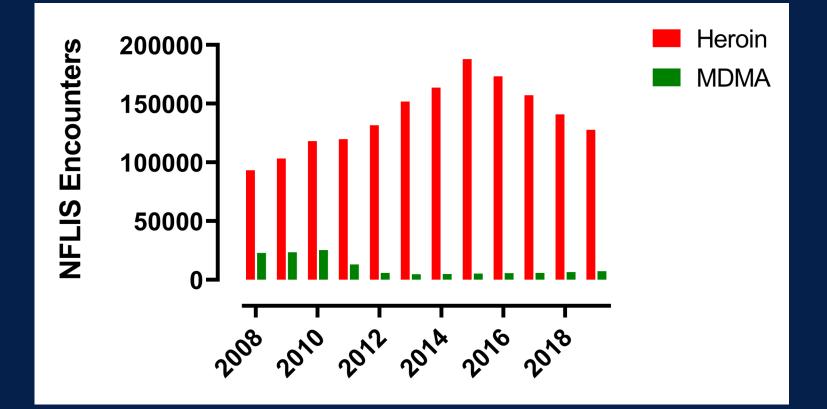
Ecstasy (MDMA) is a Synthetic Club Drug





MDMA is a Ring-Substituted Amphetamine Analog

Methamphetamine


3,4-Methylenedioxy Methamphetamine (MDMA)

Confiscation of MDMA Remains Low Compared to Other Drugs

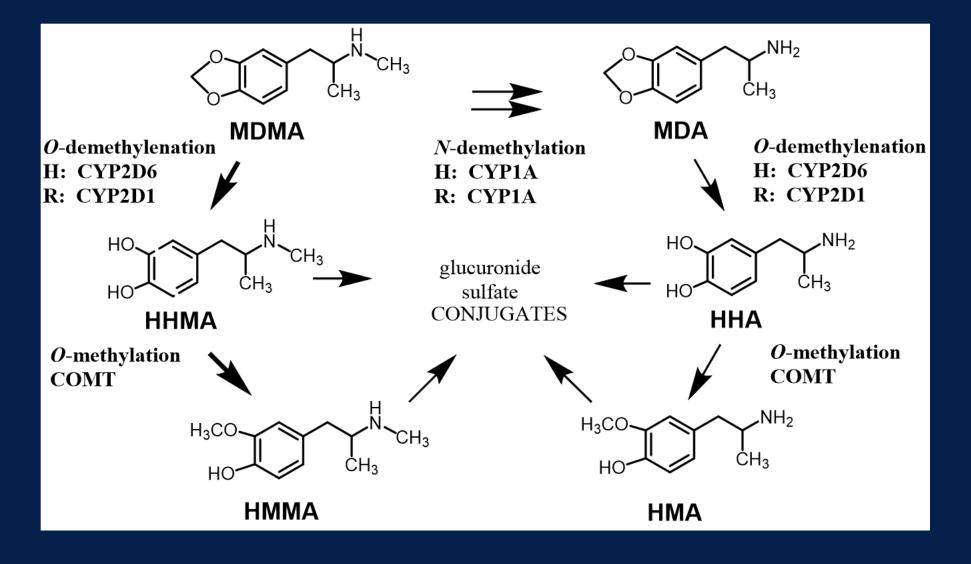
DEA NFLIS, 2020

Formulations and Methods of Use

- Powders, capsules and tablets
 - Oral ingestion of tablets most common
 - Some intranasal and intravenous use
- "Bumping" or repeated intermittent dosing
- "Stacking" or taking multiple doses at once
- Binge and crash cycling

Pharmacokinetics And Metabolism

• Pharmacokinetics


- Cmax reached within 2 h of oral ingestion
- Non-linear drug accumulation at doses > 3 mg/kg

Metabolism

- N-demethylation to form MDA (bioactive)
- O-demethylenation to form hydroxylated metabolites

MDMA Metabolism is Complex

Desired Effects

- Combined effects of a stimulant and hallucinogen
 - Enhanced mood and energy
 - Heightened or altered sensory perception
- Feelings of empathy and closeness to others
- Cardiovascular stimulation
- Appetite suppression

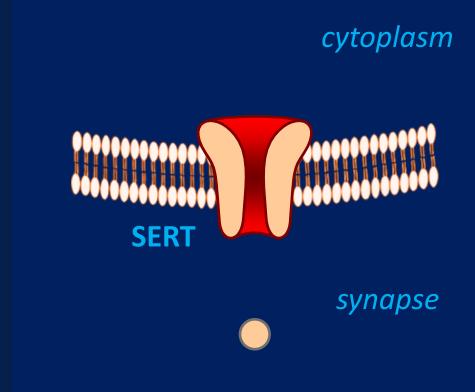
Adverse Effects

- Psychosis
- Sympathetic Stimulation
 - Palpitations and heart attack
 - Hypertension
- 5-HT Syndrome
 - Hyperthermia and dehydration
 - Treat with hydration, cooling, and sedation
 - Avoid β blockers, which could exacerbate hypertension

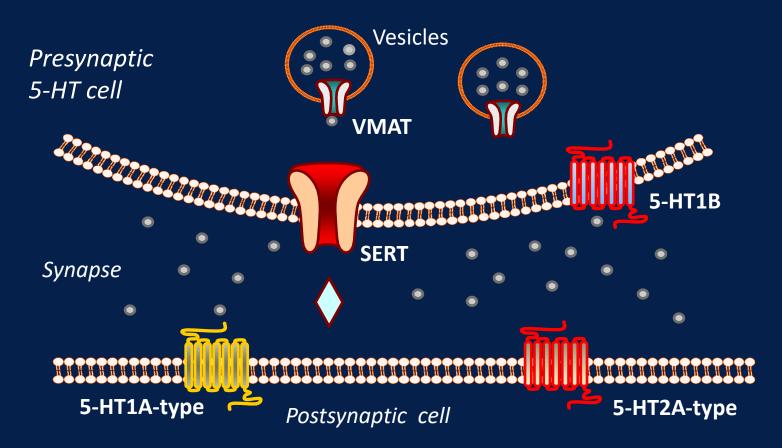
Withdrawal

- Anhedonia and depressed mood
- Lethargy and fatigue for several days
- Sleep disturbances
- No indication for treatment

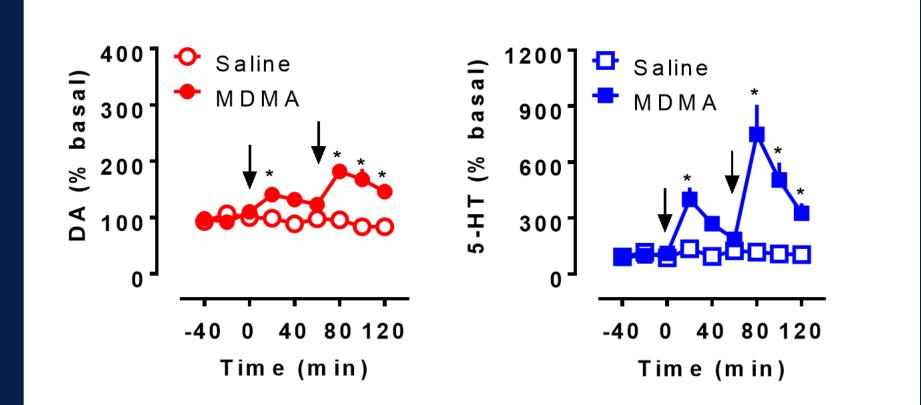
Molecular Sites of Action


- SLC6 Monoamine Transporters
 - 5-HT transporter (SERT)
 - Dopamine transporter (DAT)
 - Norepinephrine transporter (NET)

- Other sites
 - Vesicular Monoamine Transporter 2 (VMAT2)
 - 5-HT2A receptors


SERTs Mediate 5-HT Uptake

- SERTs are membrane proteins responsible for uptake of released 5-HT
- Drugs that disrupt SERT function increase synaptic 5-HT
- Increases in 5-HT are not rewarding (e.g., SSRIs)



MDMA is a SERT substrate(5-HT releaser)

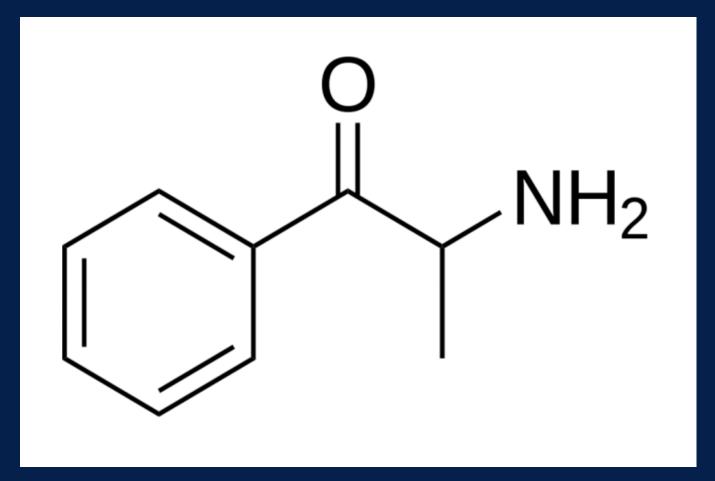
MDMA Increases Extracellular 5-HT more than DA

Neurotoxic Potential

- MDMA acutely increases synaptic 5-HT
 - SERT-mediated 5-HT release (i.e., reverse transport)
- MDMA chronically impairs 5-HT neurons
 - Depletion of 5-HT stores
 - Inhibition of 5-HT synthesis
 - Loss of SERT sites in brain
- Neurotoxicity?

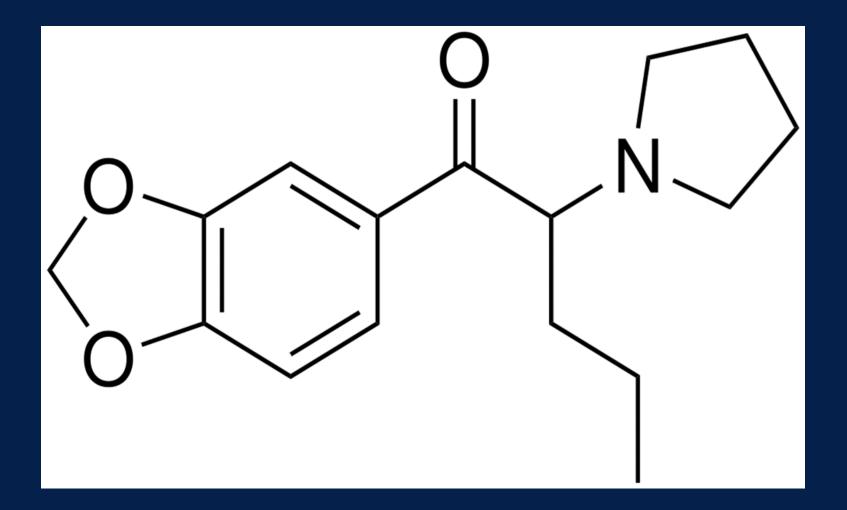
Bath Salts

Cathinone is a Plant-Based Alkaloid

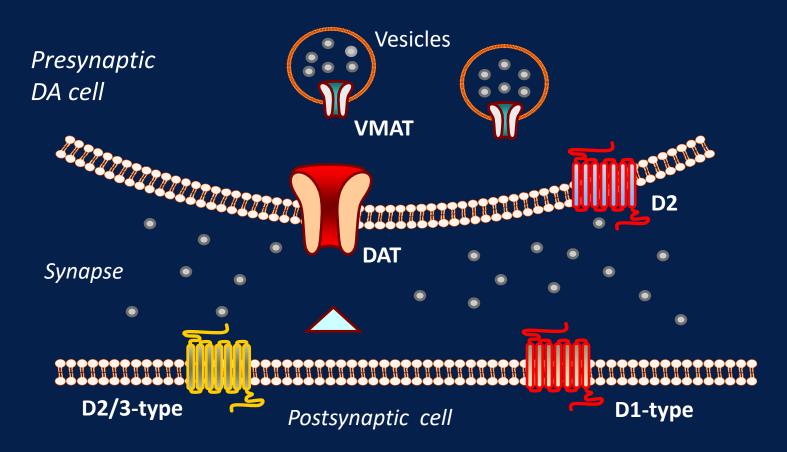


Khat Plant Catha edulis

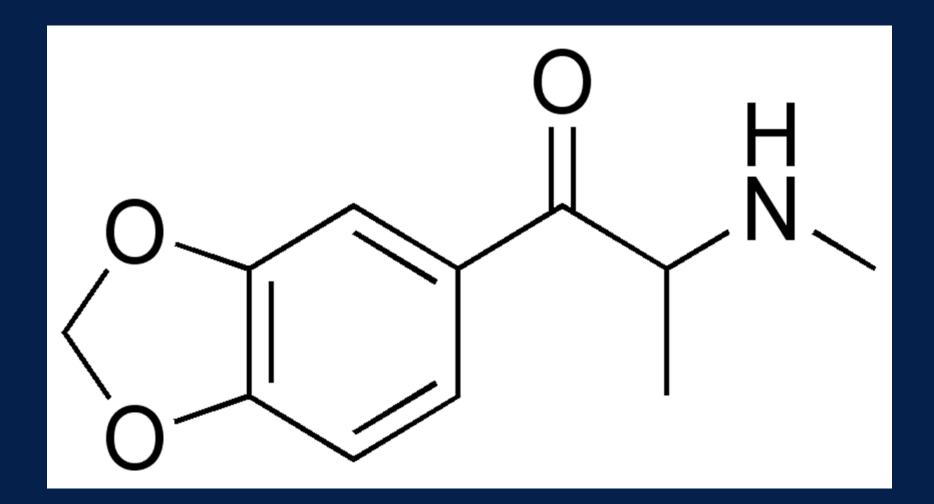
Cathinone is β-Keto Amphetamine



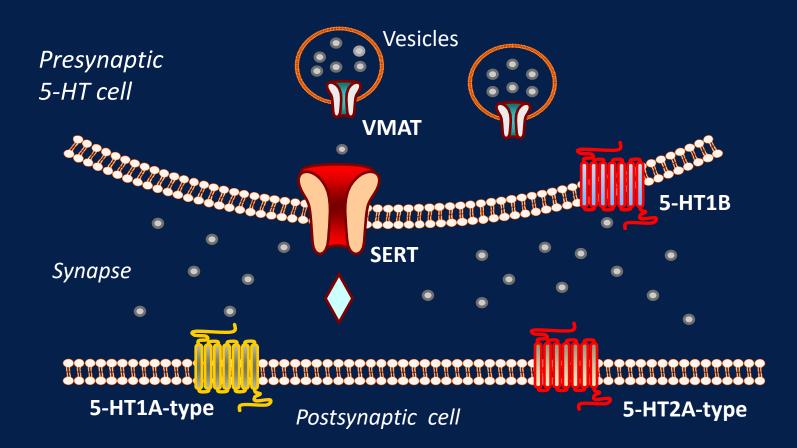
"Bath Salts" Products Contain Synthetic Cathinones



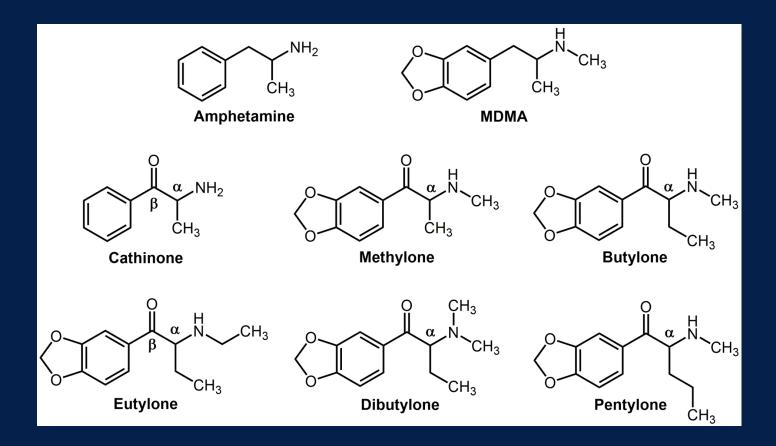
MDPV is an Analog of Pyrovalerone



MDPV is a DAT Blocker (DA Uptake Inhibitor)



Methylone is β-Keto MDMA



Methylone is a SERT substrate(5-HT releaser)

Methylone Analogs are now Appearing as Counterfeit MDMA

Overall Summary

- 1. Cocaine is the prototypical dopaminergic stimulant.
- 2. METH is a powerful stimulant due to its DAT-mediated dopamine release.
- 3. MDMA acts as a mild stimulant and hallucinogen due to its SERT-mediated 5-HT release.
- 4. MDPV is cocaine-like while methylone is MDMA-like.

Clinical Challenges

- 1. No FDA-approved medications for stimulant dependence, so treatment is psychosocially-based.
- 2. No specific antidotes for stimulant intoxication, so treatment is supportive.
- 3. Stimulant-induced deaths are increasing due to fentanyl coadministration: intentional or accidental?

Thank You

Submit Your Feedback on this Session!

✓ Scan QR code or visit bit.ly/SESSIONEVAL

✓ Choose the session you are reviewing

✓ Provide your feedback

Up Next: Other Classes of Drugs – Annie Levesque, MD, MSc