REIMAGINING PREPAREDNESS
in the ERA of COVID-19

April 4-7 2022
PREPAREDNESS SUMMIT
Atlanta

@PREPSUMMIT | #PREP22 | PREPAREDNESSSUMMIT.ORG
The Security Threat of Infectious Disease: Applying a Public Health Emergency Management Approach to Biodefense

Ryan Scott Houser, MPH, MS, EMPS, NREMT
Introduction

Who did you decide to listen to for an hour and a half on a Monday morning?
Who am I? – Research

- Elizabeth R. Griffin Program Biosafety and Biosecurity Fellow
 - Georgetown University Medical Center CGHSS
- Global Health Initiative Fellow
 - O'Neill Institute For National And Global Health Law – Georgetown University Law Center
- CLiME (Center for Law, Inequality and Metropolitan Equity) Fellow
 - Rutgers University Law School
- Research Associate
 - Kings College London (Global Bio Labs project)
 - GUMC CGHSS (IARs)
 - GULC (COVID-19 Law Lab)
 - NJMS
 - NETEC
Who am I? – Academia

• Public Health
• Emergency Management
• Biohazardous Threat Agents and Emerging Infectious Diseases
• Forensic Psychology/Homeland Security
Who am I? – Work

- Tetra Tech (Emergency Management)
- Fire/EMS
- Healthcare
- BRR
Acknowledgements – Research

• Dr. Donell Harvin
• Georgetown University School of Continuing Studies
 • Timothy Manning, Dr. Tim Frazier
• Center for Global Health Science and Security – Georgetown University Medical Center
 • Dr. Erin Sorrell
 • Dr. Rebecca Katz
 • Mr. Alexander Linder
 • Dr. Claire Standley
Acknowledgements – Tetra Tech

• Leading provider of emergency management services, including disaster response and recovery.
• We have the experience, expertise, and resources to assist both public and private sector clients in addressing the entire continuum of devastating impacts of manmade and natural events.
• Tetra Tech has provided technical support for the U.S. Environmental Protection Agency (EPA) Region 7's BioWatch program.
Who are you?
Introduction – Part II

On to what you’re actually here for...
Totally Under Control
Our COVID Failure
Our Biodefense Journey Itinerary

- Infectious Diseases, Biothreats, and Security
- Public Health Emergency Management and COVID-19
- The intersection of infectious diseases, PHEM, and biodefense
Research Background

The boring foundational stuff
Research Questions

• (1) Is the current biodefense structure providing adequate core capabilities?
• (2) Does COVID-19 accelerate the threat of bioterrorism?
• (3) Can framing infectious disease as a security threat improve preparedness efforts?
• (4) Could public health emergency management principles be applied to the structure of biodefense in order to increase capabilities?
Definitions

• Biodefense is any “actions designed to counter biological threats, reduce risks, and prepare for, respond to, and recover from bioincidents” (phe.gov, 2021)

• Biosecurity is the “strategic and integrated approach to analyzing and managing relevant risks to human, animal and plant life and health and associated risks for the environment” (INFOSAN, 2010)
Process

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familiarization with data</td>
<td>Initial thoughts from reading the data</td>
</tr>
<tr>
<td>Generation of initial codes</td>
<td>Finding key features of the data to collate in a systematic fashion</td>
</tr>
<tr>
<td>Search for themes</td>
<td>Collate the codes into themes with all the relevant data</td>
</tr>
<tr>
<td>Review of themes</td>
<td>Evaluate themes based on codes and the data set to generate an overall map of the analysis</td>
</tr>
<tr>
<td>Definition and Naming of Themes</td>
<td>Continued refining of themes and analysis with definitions and names generated</td>
</tr>
<tr>
<td>Production of Analysis</td>
<td>Compilation of findings and scholarly report</td>
</tr>
</tbody>
</table>

![Diagram showing data collection, data analysis, and results](image-url)
Data Collection

• The data collected for this research comes from numerous documents that span government, non-government organizations, and academia
• All information was gathered from publicly available documents including reports from the United States Senate
• Global Terrorism Database
Validity and Reliability

• One of the main concerns with a study of this nature is to determine what is needed to achieve validity and reliability within the context of research design based on the problem and objective.
Infectious Diseases and Security
What was the first domestic occurrence of bioterrorism?
Biodefense in the United States
A Brief Biodefense History
Domestic Preparedness

- Public Health Security and Bioterrorism Preparedness and Response Act with nearly $1 billion appropriated annually to support local preparedness and response to address bioterrorism threats (2002)
A More Recent Mindset Change

• 2007 WHO’s “A Safe Future: Global Public Health Security in the 21st Century”
 • Noted the 20th century successes of public health measures in addressing microbial scourges like cholera and smallpox,
 • Issued a warning about the alarming shift in the delicate balance between humans and microbes (Fearnley, 2008)
Advancements that provide an increasing threat of biothreats

• 1) the shifting roles of the great powers;
• 2) new pressures on arms control and nonproliferation regimes;
• 3) more roles for chemical and biological weapons;
• 4) expanding use of financial sanctions as an instrument of nonproliferation and other policies;
• 5) new types of delivery vehicles and more scope to develop and deploy them; and
• 6) other emerging and disruptive technologies with WMD relevance including artificial intelligence, biotechnology, quantum systems, and additive manufacturing (Caves & Carus, 2021)
Biothreats – Biosafety Labs

Mapping BSL-4s around the world
Biothreats – Democratization of Life Science
Which industries contributed $1.109 trillion to the GDP in 2019?

Hint: this includes 21.6 million full and part time jobs (11% of total US employment)
Case Study
Bioterrorism in the United States
<table>
<thead>
<tr>
<th>DATE</th>
<th>CITY</th>
<th>PERPETRATOR GROUP</th>
<th>FATALITIES</th>
<th>INJURED</th>
<th>TARGET TYPE</th>
<th>Biological Weapon Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/20/13</td>
<td>New York City</td>
<td>Anti-Gun Control extremists</td>
<td>0</td>
<td>0</td>
<td>Government (General)</td>
<td>Ricin</td>
</tr>
<tr>
<td>5/20/13</td>
<td>Washington</td>
<td>Anti-Gun Control extremists</td>
<td>0</td>
<td>0</td>
<td>Private Citizens & Property</td>
<td>Ricin</td>
</tr>
<tr>
<td>5/20/13</td>
<td>Washington</td>
<td>Anti-Gun Control extremists</td>
<td>0</td>
<td>0</td>
<td>Government (General)</td>
<td>Ricin</td>
</tr>
<tr>
<td>11/16/10</td>
<td>Los Angeles</td>
<td>The Justice Department</td>
<td>0</td>
<td>0</td>
<td>Educational Institution</td>
<td>AIDS infected razor blades</td>
</tr>
<tr>
<td>3/14/05</td>
<td>Arlington</td>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>Government (General), Private Citizens & Property</td>
<td>Anthrax</td>
</tr>
<tr>
<td>2/2/04</td>
<td>Washington</td>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>Government (General)</td>
<td>Ricin</td>
</tr>
<tr>
<td>11/12/03</td>
<td>Washington</td>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>Government (General)</td>
<td>Ricin</td>
</tr>
<tr>
<td>10/15/03</td>
<td>Greenville</td>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>Government (General)</td>
<td>Ricin</td>
</tr>
<tr>
<td>11/14/01</td>
<td>Oxford</td>
<td>Unknown (suspected)</td>
<td>1</td>
<td>0</td>
<td>Private Citizens & Property</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/29/01</td>
<td>New York City</td>
<td>Unknown (suspected)</td>
<td>1</td>
<td>0</td>
<td>Business</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/26/01</td>
<td>Washington</td>
<td>Unknown (suspected)</td>
<td>0</td>
<td>Unknown</td>
<td>Government (General)</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/19/01</td>
<td>New York City</td>
<td>Unknown (suspected)</td>
<td>0</td>
<td>2</td>
<td>Journalists & Media</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/18/01</td>
<td>New York City</td>
<td>Unknown (suspected)</td>
<td>0</td>
<td>1</td>
<td>Journalists & Media</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/17/01</td>
<td>New York City</td>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>Journalists & Media</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/15/01</td>
<td>Reno</td>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>Business</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/15/01</td>
<td>New York City</td>
<td>Unknown (suspected)</td>
<td>0</td>
<td>1</td>
<td>Journalists & Media</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/15/01</td>
<td>Washington</td>
<td>Unknown (suspected)</td>
<td>2</td>
<td>6</td>
<td>Journalists & Media</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/12/01</td>
<td>New York City</td>
<td>Unknown (suspected)</td>
<td>0</td>
<td>6</td>
<td>Journalists & Media</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/9/01</td>
<td>Washington</td>
<td>Unknown (suspected)</td>
<td>2</td>
<td>1</td>
<td>Government (General)</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/2/01</td>
<td>Boca Raton</td>
<td>Unknown (suspected)</td>
<td>1</td>
<td>5</td>
<td>Journalists & Media</td>
<td>Anthrax</td>
</tr>
<tr>
<td>10/2/01</td>
<td>Boca Raton</td>
<td>Unknown (suspected)</td>
<td>1</td>
<td>5</td>
<td>Business</td>
<td>Anthrax</td>
</tr>
</tbody>
</table>
Accelerated Threat of Bioterrorism

Key Statistics:
- 57 completed, failed and foiled terrorist attacks (Austria, Belgium, France, Germany, Italy and Spain)
- 21 people died
- 449 individuals were arrested on suspicion of terrorism-related offences in 17 Member States

Themes:
- Jihadist lone actors were behind all deadly terrorist attacks
- Right wing terrorism saw an increased prominence in online communities
- Left wing narratives integrated skepticism about technological and scientific developments, COVID-19 containment measures and environmental issues
- Online communities had an increased role in the propagation of right-wing extremism
- Jihadist propaganda and right-wing extremists suggested different ways to use SARS-CoV-2 virus against different targets
- The lockdowns related to the COVID-19 pandemic and the closure of public spaces for mass gatherings reduced use of explosives in terrorist attacks
Infectious Disease Threat
A Climate Change Connection

<table>
<thead>
<tr>
<th>Bio-physical impacts of climate change</th>
<th>Selected security implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Extreme weather events (especially droughts, floods and storms)</td>
<td>• Climate change may increase human and environmental insecurity with disproportionate consequences for vulnerable groups (such as women and minority indigenous groups).</td>
</tr>
<tr>
<td>• Resource depletion and shortage</td>
<td>• Impacts of climate change on water supplies, agriculture, fishing, and livestock will result in increased food insecurity, causing malnutrition and other health problems.</td>
</tr>
<tr>
<td>• Biodiversity loss</td>
<td>• Key infrastructure, such as transport systems, energy supplies and communications, will be put under stress. This may generate new economic and social risks.</td>
</tr>
<tr>
<td>• Decrease in ecosystem services</td>
<td>• Decline in economic growth due to environmental problems exacerbated by climate factors.</td>
</tr>
<tr>
<td>• Sea level rise, salt-water intrusion</td>
<td>• The tourism industry will be hit in some areas, since some destinations are expected to be submerged by sea level rise, or rendered more vulnerable to climate shocks.</td>
</tr>
<tr>
<td>• Desertification and decrease in land and soil quality</td>
<td>• With sea-level rise and extreme weather events, key infrastructure in many coastal regions (including military ones) will be damaged or destroyed, along with human life and property. In addition to the loss of territory, sea level rise may increase the risk of border disputes and political instability.</td>
</tr>
<tr>
<td>• Shifts in disease patterns</td>
<td>• Potential increase in control and competition over natural resources may generate violent conflicts within and among countries.</td>
</tr>
<tr>
<td>• Ocean acidification</td>
<td>• Climate change may act as a geopolitical multiplier of current risks.</td>
</tr>
</tbody>
</table>

![Impact of Climate Change on Human Health](image-url)
Why Infectious Disease and Security Matters
Counterterror Efforts

- Global Health Security framework
- War on terrorism

Capability and Intent

- COVID-19’s exposure of vulnerabilities
- Conflict and Instability
- Globalization
- Emerging Technology and Biomedical sciences
• “If one considers the interdependencies between human technological advances and the equally impressive progress that biological and health sciences have made... we should already conclude that the likelihood of a future terrorist using a highly potent, clandestinely produced, difficult to detect/identify/track, easily transportable and dispersible, and quite lethal biological weapon is rising significantly”
What went wrong during COVID-19?
Accountable Leadership
- Science was packaged for partisan goals
- HHS/ASPR preparedness and response efforts were inadequate
- Trump's early denial of the pandemic, active propagation of misinformation about mask-wearing and treatments, and incoherent leadership harmed the United States

Statutory Authorities and Policies
- Crimson Contagion After Action Report noted that existing authorities and policies making HHS the lead of the federal government’s response in addition to ASPR’s role were insufficient and unclear
- ASPR’s coordination role was ill-defined when the President transitioned authority of the response from the HHS Secretary to the Vice President,
- After the national emergency declaration on March 13, 2020, ASPR’s role was subsumed by FEMA.

Interagency Coordination
- ASPR did not serve as a subject matter expert to FEMA or fully and effectively integrate with FEMA’s national and regional offices and preparedness activities.
- ASPR’s limited regional presence and interaction with FEMA and state emergency management and public health authorities contributed to failures in response

Coherent Data System for Situational Awareness
- Federal entities could provide a coherent, comprehensive common operating picture with health departments across the federal state, local, tribal and territorial governments.
- Trump administration ordered hospitals to stop sending data to the Centers for Disease Control and Prevention, and instead send it to a private data firm under contract with the DHHS, whose secretary reports directly to the White House
Strategic National Stockpile and Supply Chain

- SNS and commercial PPE inventory was inadequate needs
- Weaknesses in FEMA’s resource request system and allocation processes.
- WebEOC, the system FEMA used to process PPE and ventilator resource requests, contained unreliable data to inform allocation decisions and ensure requests were addressed
- Officials within the White House coronavirus task force often circumvented FEMA’s decision-making to award contracts for PPE and other equipment to preferred states and companies
- U.S. sent masks to China and then had to buy back at a deficit in order to fulfill the demand in country
- Project Airbridge placed states against the federal government and the private sector

Testing and surveillance

- Inability to create a robust testing infrastructure left the country unable to track the rapidly unfolding outbreak
- FDA regulatory hurdles, part of the federal government’s declaration of the public health emergency, stopped both public health and private sector labs from quickly deploying start-up tests of their own
- The federal government consistently underestimated the need for urgency around testing for this virus
- N3 assay which was designed to evaluate any coronavirus contaminated CDC tests delaying results. Under Emergency Use Authorization, labs were not permitted to remove this part of the assay
- German-made, WHO distributed test was not utilized by U.S. and FDA did not approve individual lab made tests
- President Trump verbalized the desire to slow down testing
| Health Care System Surge Capacity and Resilience | Local, regional, and national health care systems were stressed, lacking adequate bed capacity, sufficient staffing, and limited medical supplies |
| Federal Funds | • HHS Secretary transferred funds to make $52 million available to ASPR for procurement of PPE and BARDA’s initial investments in medical countermeasures
• Sufficient funds only became available when Congress passed the first COVID-19 emergency supplemental funding bill (provided $3.1 billion on March 6, 2020 for the ASPR) |
Public Health Emergency Management

• Following 9/11 focus was placed on biological events after concerns prompted by the Amerithrax Attacks within the United States.

• The financial mechanisms, however, were not well aligned with the ability to prevent the spread of infectious agents or reduce the impact on public health (Katz, et al, 2017).
Prior to 1999, CDC did not fund state public health preparedness. Congress appropriated funding to CDC to assist states in improving preparedness and capabilities. Define and enhance community resilience and preparedness.

Prior to 1999, CDC conducted all tests to detect and confirm presence of biological threats. CDC’s Laboratory Response Network contains over 150 laboratories which can test for biological agents. Build robust multi-level public health infrastructure with a focus on biosurveillance.

Prior to 1999, there was no established national stockpile and in 2001 only a few states had protocols for receiving, distributing, and dispensing assets. CDC’s Strategic National Stockpile ensured availability of key supplies with all states having plans for utilization of the stockpile. Increase focus on vulnerable populations.

Prior to 2000, there was no secure system to share information about emerging threats. CDC created Epidemic Information Exchange (Epi-X) to provide a secure, web-based communication system for sharing preliminary health surveillance information. Leverage collaborative efforts in crucial infrastructure, including DHS.

Prior to 2001, multi-level governmental response efforts were coordinated from an ad-hoc CDC EOC. CDC has an advanced EOC that coordinates response activities with state public health departments through defined roles and responsibilities. Improve linkages between domestic health security and global health security.

Prior to 2001, there were few integrated communications and unified command structures for large-scale incident response. Exercises and communications between public health, emergency management, and other stakeholders took place. Improve evidence base for preparedness activities.

Prior to 2001, there were no requirements for licensing, registering, or identifying locations with select agents and toxins. Select Agent Regulations were enacted to enhance oversight of safety and security of agents and toxins.
The Limitations of Funding

• Funding for public health preparedness programs are generally completed through routine congressional appropriations.

• The appropriations for domestic health security fluctuate from year to year and do not frequently provide the necessary contingency funds to respond to biological incidents (Katz, et al, 2017).
CDC’s Public Health Emergency Preparedness and Response Capabilities

The 15 capabilities help state, local, tribal, and territorial jurisdictions enhance their ability to prepare for, respond to, and recover from emergencies by supporting the following functions.

- **Planning Framework**
 - Comprehensive framework to guide public health planning and response

- **Common Terminology**
 - Consistent language for public health preparedness and response

- **Public Health Role**
 - References to help jurisdictions define their preparedness and response role

- **Collaboration Tool**
 - Suggestions to ensure applicable stakeholders are involved

- **Evaluation Planning**
 - Considerations for jurisdictional evaluation programs and exercise priorities
Costs of wars falls under Overseas Contingency Operations not base budget
FEDERAL PUBLIC HEALTH PREPAREDNESS FUNDING, BY PROGRAM

- CDC SNS
- NIAID Biodefense Research
- BARDA
- Project BioShield

MILLIONS OF DOLLARS

SIX DOMAINS OF PREPAREDNESS

The Public Health Emergency Preparedness Program works to advance six main areas of preparedness so state and local public health systems are better prepared for emergencies that impact the public’s health.

Community Resilience:
Preparing for and recovering from emergencies

Incident management:
Coordinating an effective response

Information Management:
Making sure people have information to take action

Countermeasures and Mitigation:
Getting medicines and supplies where they are needed

Surge Management:
Expanding medical services to handle large events

Biosurveillance:
Investigating and identifying health threats

Regional Disaster Health Response System Goals

- Improve Organization and Coordination across local, state, regional, and federal healthcare response assets
- Improve Situational Awareness of the medical needs and issues in response
- Identify and Further Develop Highly Specialized Clinical Capabilities critical to unusual hazards or catastrophic events
- Increase Healthcare Coalition Participation to ensure that states and regions maintain accessible and response-ready clinical capabilities that are essential in disasters and public health emergencies

www.cdc.gov/epi/readiness
Applicability of PHEM in Biodefense
The Intersection: ID/Security/PHEM/Biodefense
- Accountable Leadership
- Statutory Authorities and Policies
- Interagency Coordination
- Coherent Data System for Situational Awareness
- Strategic National Stockpile and Supply Chain
- Testing and surveillance
- Health Care System Surge Capacity and Resilience
- Federal Funds

<table>
<thead>
<tr>
<th>Domains</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident Management</td>
<td>Emergency Operations Coordination</td>
</tr>
<tr>
<td>Information Management</td>
<td>Emergency Public Information and Warning</td>
</tr>
<tr>
<td></td>
<td>Information Sharing</td>
</tr>
<tr>
<td>Surge Management</td>
<td>Fatality Management</td>
</tr>
<tr>
<td></td>
<td>Mass Care</td>
</tr>
<tr>
<td></td>
<td>Medical Surge</td>
</tr>
<tr>
<td></td>
<td>Volunteer Management</td>
</tr>
<tr>
<td>Countermeasures and Mitigation</td>
<td>Medical Countermeasure Dispensing</td>
</tr>
<tr>
<td></td>
<td>Medical Materiel Management and Distribution</td>
</tr>
<tr>
<td></td>
<td>Non-Pharmaceutical Interventions</td>
</tr>
<tr>
<td>Community Resilience</td>
<td>Community Preparedness</td>
</tr>
<tr>
<td></td>
<td>Community Recovery</td>
</tr>
<tr>
<td>Biosurveillance</td>
<td>Public Health Laboratory Testing</td>
</tr>
<tr>
<td></td>
<td>Public Health Surveillance and Epidemiological</td>
</tr>
<tr>
<td></td>
<td>Investigation</td>
</tr>
</tbody>
</table>
Global Health Security/PHEM

Health Security

Prevent
- Preventing the emergence or release of pathogens

Detect
- Early detection and reporting epidemics of potential international concern

Respond
- Rapidly responding to and mitigating the spread of an epidemic

Health
- Sufficient & robust health sector to treat the sick & protect health workers

Norms
- Commitments to improving national capacity, financing and adherence to norms

Risk
- Risk environment and vulnerability to biological threats
Where do we go from here?
Limitations

• (1) focus on health security aspect of biodefense,
• (2) analysis of documents/artifacts only,
• (3) the constraints of an on-going pandemic,
• (4) the political discourse surrounding the topic, and
• (5) the domestic focus
Should we have been ready?
Did we know we had deficiencies ahead of time?
Let’s Actually Learn from AARs

- 2019 Functional Exercise
- Determine the nation’s ability to respond to a large-scale outbreak of a novel avian influenza virus (H7N9) strain, a virus which spreads quickly amongst humans with high rates of morbidity and mortality.
<table>
<thead>
<tr>
<th>Domains</th>
<th>Specific Findings</th>
</tr>
</thead>
</table>
| **Statutory Authorities and Policies** | - Existing structure tasking HHS to lead response to influenza pandemic are insufficient
- Policies were often in conflict and lead to confusion |
| **Funding** | - Insufficient funding sources designated for the federal government to use in response to an influenza pandemic
- Unclear structures for if/how states could repurpose HHS and the Centers for Disease Control and Prevention (CDC) grants, as well as other federal dollars to support the response |
| **Planning** | - Biological Incident Annex to the Response and Recovery Federal Interagency Operational Plans (January 2017) and the Pandemic Crisis Action Plan Version 2.0 (January 2018) neglect to outline organizational structure for federal response when HHS is the designated lead
- Crisis standards of care planning and implementation varied across levels of government |
| **Operational Coordination** | - Absent clarity on federal interagency partners' roles and responsibilities
- States lacked clarity on which channels they should use to request information from and report information to federal partners throughout the response
- HHS' Operating Divisions and Staff Divisions provided inconsistent and inaccurate response guidance and actions to healthcare and public health private sector partners |
<table>
<thead>
<tr>
<th>Domains</th>
<th>Specific Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situational Assessment</td>
<td>• HHS and FEMA's use of disparate information management systems hampered ability to establish and maintain a national common operating picture \n• Lack clarity on CDC's data sharing policies \n• Federal partners did not provide state, local, tribal, and territorial public health and medical and emergency management partners with a standard template to report information across community lifelines \n• HHS' regional staff lack clear guidance on the distribution of federal information management products \n• Existing limited mechanisms to share information were insufficient \n• Inconsistent use of terminology regarding vaccine types and stockpiles</td>
</tr>
<tr>
<td>Resources</td>
<td>• Medical countermeasure supply chain and production capacity may not meet the demands imposed by countries during a global influenza pandemic \n• Participants were not clear on the applicability or use of Title I, Priorities and Allocations Authority, of the Defense Production Act to mitigate medical countermeasure and ancillary supply shortages during an response \n• States experienced multiple challenges requesting resources from the federal government \n• States’ indicated that they were unclear on prepandemic vaccine and the Strategic National Stockpile asset distribution</td>
</tr>
<tr>
<td>Public Information and Risk Communications</td>
<td>• Implementation of school closures among some participating states highlighted the many cascading impacts to communities; and the variation in timing of school closures caused confusion among exercise participants</td>
</tr>
</tbody>
</table>
Reconsider Funding Priorities

• Funding for the hospital preparedness program decreased from $515 million to $275 million during the same timeframe. When corrected for inflation the combined spending went from over $2 billion in 2003 to a bit under $1 billion in 2020.

• DoD Base Budget has generally increased around $12,815,000,000 dollars every year from 2001 to 2020, through Presidents of both political parties.

• The cost of preventing future pandemics has been estimated to cost between $18 and $27 billion dollars per year for the next ten years which is only 1% the cost of the current pandemic.
Pandemic Prevention Institute
What is needed for the future?

• Promote Strong, Effective Leadership and Coordination
• Strengthen Public-Private-Government Partnerships
• Innovation, Capacity, and Capability Improvements
The Biodefense Puzzle
Questions?
Thank you

• General/Research: houser.ryanscott@gmail.com
• Tetra Tech: ryan.houser@tetratech.com
• (973) 960-1906